Graphene edges; localized edge state and electron wave interference
نویسندگان
چکیده
منابع مشابه
Giant edge state splitting at atomically precise graphene zigzag edges
Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host e...
متن کاملElectron states near graphene edge
The band structure of graphene near the Fermi surface is often well described by the effective mass approximation. In this approach electron wave function obeys the Diractype equation. To describe a number of effects it is necessary to supplement the equation with boundary conditions. Using the Hermiticity and the time reversal symmetry we derive the phenomenological boundary conditions for a m...
متن کاملElectron Interference in Ballistic Graphene Nanoconstrictions.
We realize nanometer size constrictions in ballistic graphene nanoribbons grown on sidewalls of SiC mesa structures. The high quality of our devices allows the observation of a number of electronic quantum interference phenomena. The transmissions of Fabry-Perot-like resonances are probed by in situ transport measurements at various temperatures. The energies of the resonances are determined by...
متن کاملRole of edges in the electronic and magnetic structures of nanographene
In graphene edges or nanographene, the presence of edges strongly affects the electronic structure depending on their edge shape (zigzag and armchair edges) as observed with the electron wave interference and the creation of non-bonding π -electron state (edge state). We investigate the edge-inherent electronic features and the magnetic properties of edge-sate spins in nanographene/graphene edg...
متن کاملSpin-dependent electron scattering at graphene edges on Ni(111).
We investigate the scattering of surface electrons by the edges of graphene islands grown on Ni(111). By combining local tunneling spectroscopy and ab initio electronic structure calculations we find that the hybridization between graphene and Ni states results in strongly reflecting graphene edges. Quantum interference patterns formed around the islands reveal a spin-dependent scattering of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EPJ Web of Conferences
سال: 2012
ISSN: 2100-014X
DOI: 10.1051/epjconf/20122300017